1 Elly's height is 1.61 m and Adela's height is 1.73 m, measured correct to three significant figures.

Find the greatest possible difference in their heights in metres, correct to three significant figures.

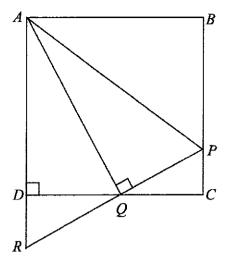
Answer m [1]

Sharp rise in number of new
Housing Board Build-To-Order (BTO) flats

Number
(in thousands)

2019
2020
2021
Year

Explain how the line graph above may be misleading.


3	Simplify $(2x^2)^3 \div 4\sqrt{x}$, giving your answer in the form of ax^n , where a and n
	are rational numbers.

Answer[2]

4 Given that $9172.05 = (9 \times 10^3) + (1 \times 10^2) + (7 \times 10) + (2 \times 10^a) + (5 \times 10^b)$, write down the values of a and of b.

Write as a single fraction in its simplest form $\frac{3}{1-x^2} - \frac{2}{x+1}$.

Answer[2]

ABCD is a square and AQ is perpendicular to PR. PQR and ADR are straight lines. DQ:DC=1:2.

Show that triangle DQR is congruent to triangle CQP. Give a reason for each statement you make.

Answer

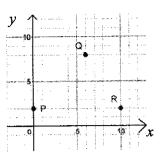
7	Use factorisation to solve the equation.	
	$2h^2 - 11h - 21 = 0$	
	Answer $h = \dots $	[2
8	Answer $h = \dots$ or	[2
8	Answer $h = \dots$ or	[2
8	A map is drawn to a scale of $1:n$. The actual distance between two points X and Y is 2.8 km.	[2
8	A map is drawn to a scale of $1:n$. The actual distance between two points X and Y is 2.8 km. On the map, they are 4 cm apart.	[2
8	A map is drawn to a scale of $1:n$. The actual distance between two points X and Y is 2.8 km. On the map, they are 4 cm apart.	[2]
8	A map is drawn to a scale of $1:n$. The actual distance between two points X and Y is 2.8 km. On the map, they are 4 cm apart.	[2
8	A map is drawn to a scale of $1:n$. The actual distance between two points X and Y is 2.8 km. On the map, they are 4 cm apart.	[2]
8	A map is drawn to a scale of $1:n$. The actual distance between two points X and Y is 2.8 km. On the map, they are 4 cm apart. Find the value of n .	[2]
8	A map is drawn to a scale of $1:n$. The actual distance between two points X and Y is 2.8 km. On the map, they are 4 cm apart. Find the value of n .	[2]
8	A map is drawn to a scale of $1:n$. The actual distance between two points X and Y is 2.8 km. On the map, they are 4 cm apart. Find the value of n .	[2]
8	A map is drawn to a scale of $1:n$. The actual distance between two points X and Y is 2.8 km. On the map, they are 4 cm apart. Find the value of n .	[2]
8	A map is drawn to a scale of $1:n$. The actual distance between two points X and Y is 2.8 km. On the map, they are 4 cm apart. Find the value of n .	[2]
8	A map is drawn to a scale of $1:n$. The actual distance between two points X and Y is 2.8 km. On the map, they are 4 cm apart. Find the value of n .	[2

Answer

 $n = \dots$ [2]

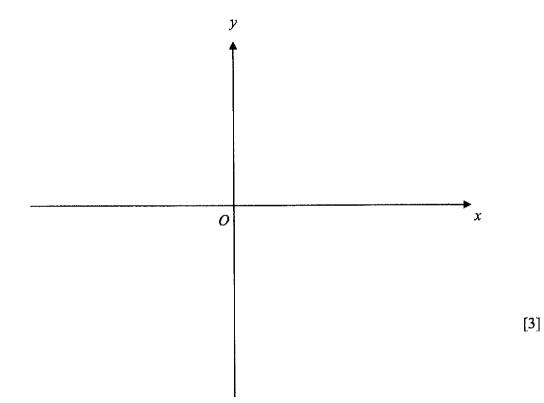
9	Solve the inequalities $x \le \frac{x+4}{3} \le 2x-1$.

The acceleration, a m/s², of a particle is inversely proportional to the square of its distance x metres from a fixed point.
 The distance of the particle is reduced to 0.5x.

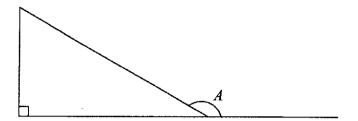

Find the ratio of the acceleration to the original acceleration.

Answer : [3]

11 PQSR is a parallelogram.


The coordinates of P, Q and R are (0,2), (6,8) and (10,2) respectively.

Find area of the parallelogram PQSR.

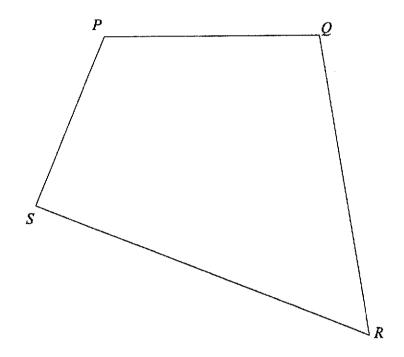


Answer ur	its ² [3]
-----------	----------------------

12 Sketch the graph of y = (x+4)(10-x) on the axes below. Indicate clearly the coordinates of the points where the graph crosses the axes and the maximum point on the curve.

13 In the diagram, A is an obtuse angle such that $\sin A = \frac{5}{13}$.

Leaving your answer as a fraction, find the value of


(a) $\sin(180^{\circ}-A)$,

Answer	[1]
ZIIID TVC	 1 1

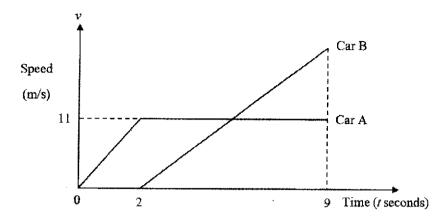
(b) $\cos A$.

Answer[2]

14 The diagram shows a quadrilateral PQRS.

On the diagram,

(a)	construct the perpendicular bisector of SR such that it meets PQ			
	at point Z.			
	Mark and label Z.	[2]		


(b) measure and write down the size of angle PZS.

Anmuor	o	[1]
Answer	***************************************	[F]

15	(a)	Factorise completely $5pr - 2ps - 5qr + 2ps$	2 <i>qs</i> .	
		4	F	•
		Ans	wer[2	2]
	(b)	Given that $p \neq q$, find the value of $\frac{r}{s}$ w	hen $5pr - 2ps - 5qr + 2qs = 0$.	
		Ans	wer[2	:]

16	Written as a product of its prime factors, $p = 2^{1} \times 3^{x} \times 7^{y} \text{ and } q = 3 \times 7^{2} \times 11$					
	(a)	Find the smallest value of x and y for which p is a multiple of 21.				
		Answer $x = \dots y = \dots$	[2]			
	(b)	Explain why $33q$ is a perfect square.				
		Answer				

......[2]

The diagram shows the speed-time graph of two cars, A and B.

Car A, starting from rest, accelerates uniformly for 2 seconds until it reaches a speed of 11 m/s.

It then continues to travel at constant speed.

2 seconds later, Car B starts from the same point as Car A.

(a)	Find
1 • • • •	

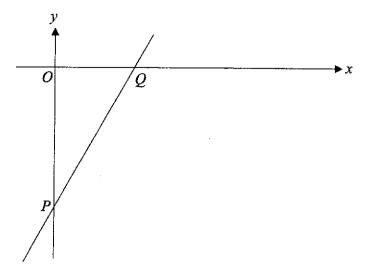
(i) the acceleration of Car A when t = 1,

m/s ²	[1]
	m/s ²

(ii) the distance travelled by Car A for the first 2 seconds.

(b) Car B accelerates uniformly from rest.It overtakes Car A when t=9 seconds.Find v, the speed of Car B when it overtakes Car A.

Answer
$$v = \dots$$
 [2]


18	$A = \{ \mathbf{p} \\ B = \{ \mathbf{r} \} $	ntegers $x: 2 \le x \le 13$ prime numbers } multiples of 4 } factors of 12 }		
	List th	e elements in		
	(a)	B',		
			Answer	 [1]
	(b)	$A \cap B'$,		
			Answer	 [1]
	(c)	$(A \cup B)'$,		
			Answer	 [1]
	(d)	$B\cap C$.		
			Answer	 [1]

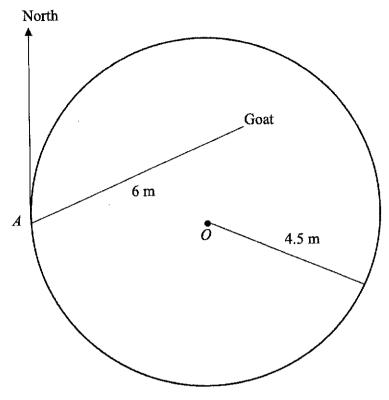
19	The number of blue, white and black masks Julian has is in the ratio 3:4:5. After exchanging 30 black masks for blue ones, the ratio becomes 9:10:11.					
	Find the number of blue masks Julian has now.					
	Answer masks	[4]				
20						
	← 5 cm ← 6.5 cm					
	The diagram shows two geometrically similar cup and saucer sets. The diameter of the smaller saucer is 5 cm. The diameter of the larger saucer is 6.5 cm. A coffee shop sells the smaller cup of coffee at \$1 and the larger cup at \$2.					
	Calculate which is a better buy. Explain your answer.					
	Answer					
		[4]				

The matrix below shows the results of three baseball teams in a series of competition.

	win Draw Lose	
	$\mathbf{R} = \begin{pmatrix} 12 & 5 & 3 \\ 3 & 8 & 7 \\ 9 & 4 & 4 \end{pmatrix}$ Gratitude Respect Compassion	
	$\mathbf{R} = \begin{bmatrix} 3 & 8 & 7 \end{bmatrix}$ Respect	
	(9 4 4) Compassion	
(a)	A win gains 3 points, a draw 1 point and a loss 0 point. Represent this information with a 3×1 column matrix P.	
·	Answer P =	[1]
(b)	Evaluate the matrix RP .	
	Answer $\mathbf{RP} = \dots$	[2]
(c)	Explain what your answer to (b) represents and state the name of the winning baseball team. Answer	
	11163 77-01	
		[1]

The diagram shows a sketch of the graph of y = -10 + 2x. The line crosses the axes at P and Q.

(a) Find the coordinates of P and Q.


Answer
$$P(.....,)$$

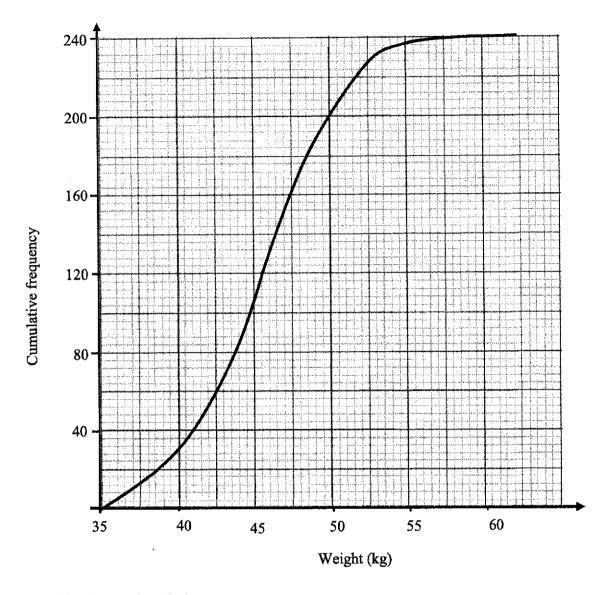
$$Q(.....,)$$
[2]

(b) Calculate the length of the line joining P to Q.

Answer units [2]

1

The diagram shows a goat tied to a pole at A. The length of the rope attached to the goat is 6 m. A is due west of the centre of the circle, O.


(a) Measure the bearing of the goat from A.

Inswer ° [1]

	A	Inswer	•••••	[3]
		,		
	Find the probability that the goat is in the	e grass p	oatch.	
(b)	The circle represents a grass patch of radius 4.5 m.			

www.geniebook.com

24 The cumulative frequency graph below shows the weight of 240 students in a school.

Use the graph to find

(a) the number of students with a weight greater than 55 kg,

Answer[1]

the interquartile range,

(b)

	Answer	kg	[2]
(c)	the median.		
T.	Answer	_	[1]
	is discovered that the weighing machine used to measure the weight cents was faulty.	of the	
The we	weight of each of the students was supposed to be 5 kg more than the hts.	eir recorded	
(d)	Explain how the cumulative frequency curve of the corrected wei differ from the given curve.	ghts will	
	Answer	•••••	
		•••••	
		•••••	
		•••••	[2]

25	The fir	The first four terms of a sequence are 5, 9, 13 and 17.					
	(a)	Write down the 8th term of the sequence.					
		,	r17				
		Answer	[1]				
	a.s	Find an expression, in terms of n , for the n th term of the sequence.					
	(b)	ring an expression, in terms of n, for the null term of the sequence.					
		Answer	[2]				
	(c)	One term of the sequence is 205.					
		Find the value of n for this term.					
		Answer $n = \dots n$	[1]				
	(d)	Explain why 50 is not part of the sequence.					
		Ammuna					
		Answer					
			נטז				
			[2]				

1	(a)	Simplify	$\frac{16a^4b^2}{5}$	$\div \frac{8a^3}{25ab^3}.$
---	-----	----------	----------------------	-----------------------------

Answer		[2]
--------	--	-----

(b) (i) Express $-4x+x^2-6$ in the form $a+(x+b)^2$, where a and b are integers.

Answer _____ [2]

(ii) Write down the coordinates of the minimum point of the graph of $y = -4x + x^2 - 6$.

(c)	$l=\frac{1}{2}$	(m^2-n)			
	(i) ²	Evaluate l when $m = 4$ and $n =$	− 5 .		
		2	Answer	<i>1</i> =	[1]
	(ii)	Express n in terms of l and m .			
		2	Answer _		[2]

(d) Solve $\frac{x+1}{2x+3} + \frac{3x}{4x^2-9} = 2$.

Answer x = 0 or [4]

			5		
2	(a)	Ticke	ildren indoor playground can accommodate 160 people in a session. et price for an accompanying adult and a child is \$9 and \$32.50 ectively.		
		(i)	On a particular weekend afternoon, the playground is 60% full. 75% of the patrons are children.		
			Calculate the total amount collected from the sales of tickets.		
			Answer \$	[3]
		(ii)	On that same particular weekend evening, \$3900 was collected from the sales of tickets for children.		
			Calculate the percentage increase in the number of children who patronized the playground on the weekend evening compared to the afternoon.		
			·		
			Answer ⁰ /	6 I	3

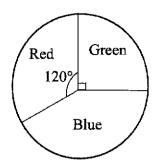
(b) Arielle plans to invest \$25 000 over a period of 2 years.
 Plan A offers simple interest of 6.2% per annum.
 Plan B offers 6% per annum interest compounded quarterly.

Determine which plan offers a better return for her. Justify your answer.

Answer

3 (a) Students in a class were asked how many siblings they have.
The results are shown in the table.

Number of	0	1	2	3	4
sibling					
Number of	5	18	10	x	2
students					


(i)	The modal number of siblings is 1.
• /	Calculate the greatest possible number of students in the class.

	Answer	[2]
(ii)	The median number of siblings is 2. Calculate the smallest possible value of x .	
	Answer $x =$	[1]
(iii)	The mean number of siblings is 1.525. Calculate the value of x.	

Answer x = [2]

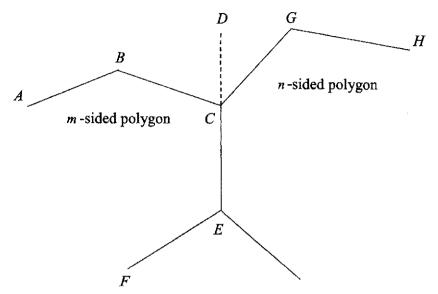
(b) A dart board comprises of 3 colours as shown below.

[Turn Over

A pouch contains six 10 cents coins, three 20 cents coins and one 50 cents coin.

Tim throws a dart first then picks a coin from the pouch.

(i) Draw a tree diagram to show the probabilities of the possible outcomes.

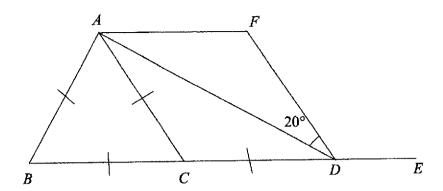

Answer

(ii)	Calculate the probability that coin is picked.	the dart hits the red region and a 20 cent	
		Answer	[2]
(iii)	State one assumption made.		
	Answer		-
			_
			[1]

4 (a) A regular *m*-sided polygon and a regular *n*-sided polygon are joined together.

Part of the polygons are shown below.

 $\angle BCD: \angle DCG = 5:3$



Mike made some calculations and claimed that m = 6 and n = 10.

Determine if Mike's claim is accurate. Justify your answer.

Answer

(b)

Triangle ABC is an equilateral triangle. AC = CD. $\angle ADF = 20^{\circ}$

AD bisects $\angle CAF$.

Show that AF is parallel to CD. **(i)** State your reasons.

Answer

ı	^	7
ı	L	1

Calculate

(ii) reflex $\angle BAF$,

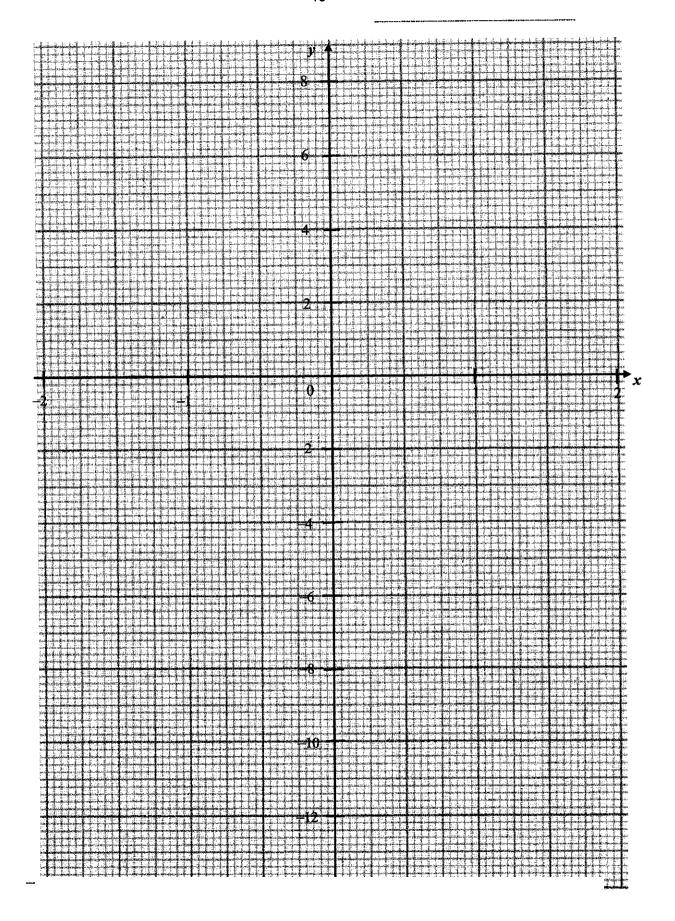
Answer	0	[1]
1110 17 01		L^_1

(iii) ∠FDE.

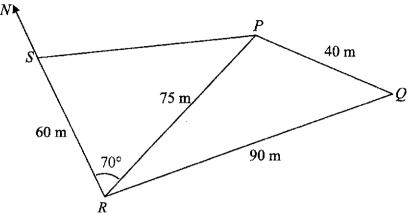
<u>°</u> [1]

5 (a) Complete the table of values for $y = 2x^3 - x^2 - 10x$.

x	-2	-1.5	1	-0.5	0	1	1.5	2
y	0	6	7	4.5	0	-9	-10.5	


(b) On the grid opposite, draw the graph of $y = 2x^3 - x^2 - 10x$ for $-2 \le x \le 2$. [3]

[1]


- (c) The equation $2x^3 x^2 5x = -8$ only has one solution.
 - (i) Explain how this can be seen from your graph.

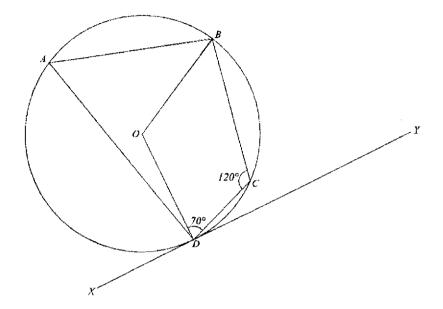
 Answer

	(ii)	Use your graph to find the solution of the equation $2x^3 - x^2 - 5x = -8$.	[3]
		Answer	_ [1]
(d)	Use	your graph to find the x-coordinate of the maximum point.	

6 The diagram represents a flat plot of land PQRS. PQ = 40 m, PR = 75 m, QR = 90 m, SR = 60 m and $\angle PRS = 70^{\circ}$. [Turn Over S is due north of R and Q is due east of R.

- (a) Find
 - (i) the area of the land PQRS,

Answer	m ²	[2]
11,00,00		[-1


(ii) the length of PS,

Answer	m	[3]

(iii) the angle PSR,

		Answ	per	<u> </u>	[2]
	(iv)	the shortest distance from S to PR .			
		Ansv	ver	<u>m_</u>	[1]
(b)	T is	the top of a vertical tower at S . angle of elevation of T from R is 10°).		
	(i)	Find the height of the tower.			
		Ans	wer	m	[1]
	(ii)	Hence, find the greatest angle of e	levation of T viewed from PR.		
		Ans	wer	0	[1]

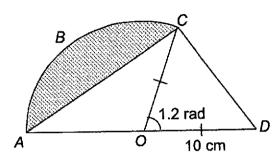
7 (a) A circle with centre O has a tangent XY at D. $\angle ODC = 70^{\circ}, \angle BCD = 120^{\circ} \text{ and } \angle ODA = 15^{\circ}.$

Find

(i) $\angle CDY$,

Answer	[1]

(ii) $\angle DAB$,


Answer ______ ° [1]

(iii) ∠OBA.

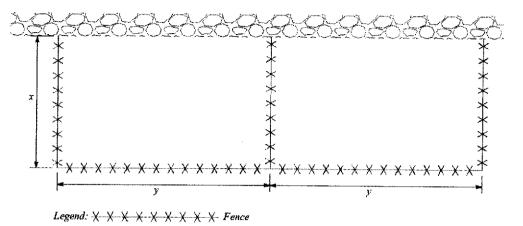
Answer _____ ° [3]

(b) The diagram shows a sector *OABC* of a circle, centre *O* and an isosceles triangle *OCD*.

OC = OD = 10 cm and $\angle COD = 1.2$ radians.

Find

(i) the area of the shaded segment ABC,


4	cm^2	[21	l
Answer	cm ²	ردا	ı

(ii) the length CD.

Answer	cm	[2]

8 Old MacDonald has a farm with a rock wall around it.

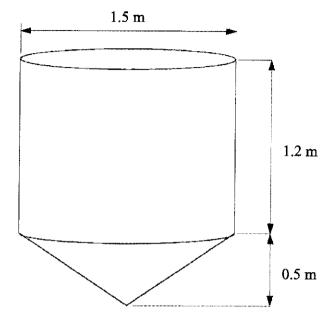
The figure shows a portion of his farm where he plans to build two enclosures.

The total length of the fence is 180 m.

(a) Show that $y = 90 - \frac{3}{2}x$.

Answer

[1]

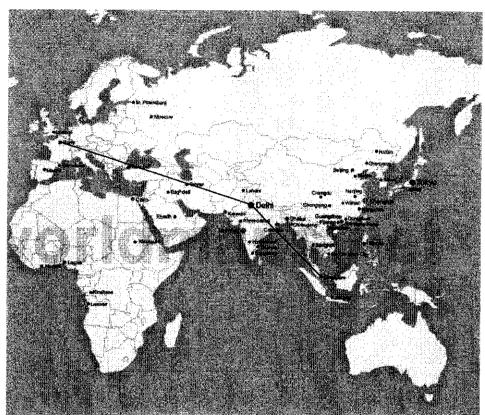

(b) A is the total areas of the 2 enclosures.

Form a quadratic equation for A in terms of x.

Answer

(c)	If $A = 2100 \text{ m}^2$, solve for x. Leave your answer in 2 decimal places.				
	Answe.	r <u>x</u> =		or	[3]
(d)	Using your answers in part (c), find the coot the quadratic equation of area, A.	rdinat	es of the tu	rning point o	f
	Answe	er <u>(</u>		, ,) [2]
(e)	e) Explain if the answer found in part (d) rep area.	resents	s a maxim	ım or minimu	m
	Answer			100 to	
				8 44 57 4P	
				3.2.3.7.7	[2]

An industrial mixer is made up of an **open** cylinder connected to a cone. The height of the cylinder and the cone is 1.2 m and 0.5 m respectively. The diameter of the mixer is 1.5 m.


(a) Find the capacity of the mixer in litres,

Answer	litres	[3]
AHS WEI	nues	121

(b)	Wate	r is poured into the mixer.			
	Find	the height of the water level, ir	n centimetres, given that the volume i	s	
	(i)	500 litres,			
				am	[2]
			Answer	cm	[3]
	(ii)	150 litres.			
			Answer	cm	[2]
(c)	The	outside of the mixer is to be part of paint can cover 4.5 m ² .	ainted bright yellow.		
	Hov	v many cans are needed to pair	at 6 such mixers?		
			Answer	cans	[3]

10 John is planning a trip from Singapore to Paris. His flight will stop over in Delhi before continuing its journey to Paris.

Answer the following questions using the information from the map below.

Map is drawn to scale.

•	•	******	.1	4 ,		^	V~ 11 '0
10		Dr. tou M.	tha	honman	At Dame	trom	I lalbi'
(:	1. 3	What is		DCALU12	UL LALIS	HUHH	17611114

Answer	•	1	J

(b) The distance from Singapore to Delhi is 4150 km.

What is the distance from Delhi to Paris?

Answer km	[2]
-----------	-----

The table below shows the Greenwich Meridian Time (GMT) for several locations in the world.

Location :	GMT
Brisbane, Australia	+10:00
Delhi, India	+05:30
Greenwich, England	00:00
Los Angeles, United States	-07:00
Paris, France	+02:00
Singapore, Singapore	+08:00
Toronto, Canada	-04:00

Note: Brisbane is 10 hours ahead of Greenwich and Los Angeles in 7 hours behind Greenwich.

John departed from Singapore at 11:15 pm on a Saturday. His flight will stop over at Delhi for 2 hours before continuing to Paris. The average speed of an airplane is 850km/h.

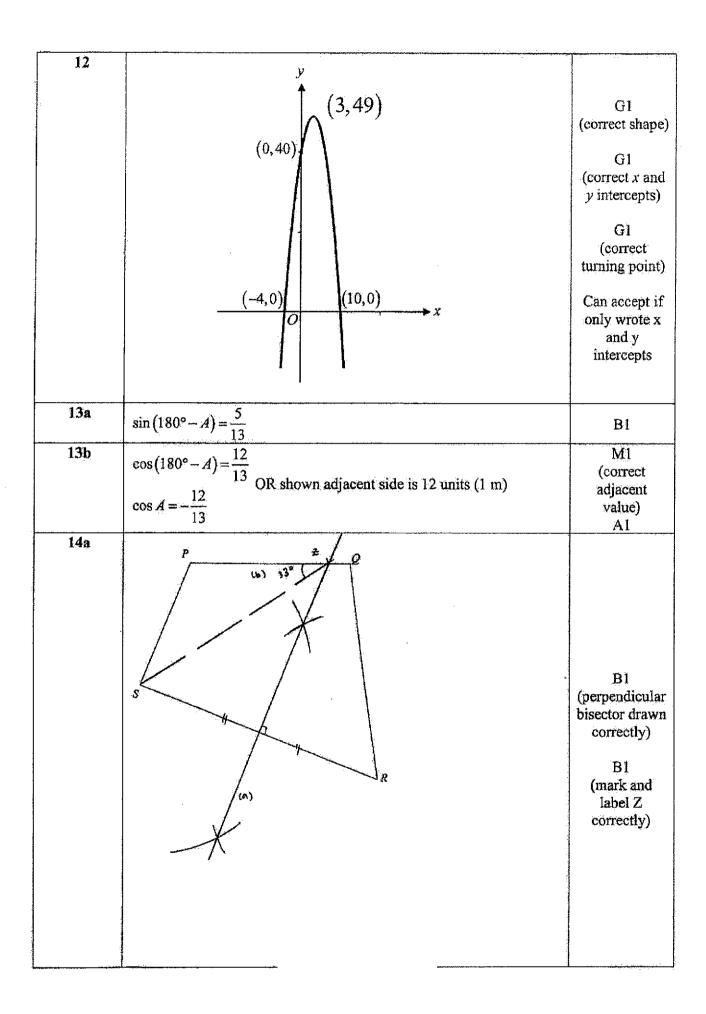
(c) On what day and at what time will John arrive in Paris?

Answer

Answers

-	1.734 - 1.605 = 0.129 m OR $1.7349 - 1.6050 = 0.130 m$			
1 2	The title of the line graph is biased as it does not allow reader to make			
2				
	judgement. OR			
	The vertical axis does not start from 0, which exaggerated the			
1	differences. (Can accept without the reasoning)			
3	$2x^{5\frac{1}{2}}$			
4	a = 0, b = -2			
5	1+2x $1+2x$			
	$= \frac{1+2x}{1-x^2} \text{ or } \frac{1+2x}{(1+x)(1-x)}$			
7				
	$h=-\frac{3}{2}$ or $h=7$			
8	n = 70000			
	14 - 10 000			
9	2			
	$1\frac{2}{5} \le x \le 2$			
	V			
10	$a_{\text{now}}: a_{\text{original}} = 4:1$			
11	60 square units			
13a	$\sin(180^\circ - A) = \frac{5}{13}$			
-	$\sin(100-A)-\frac{13}{13}$			
13b	12 OR above adjacent aids is 12 units (1 m)			
	$\cos A = -\frac{12}{13}$ OR shown adjacent side is 12 units (1 m)			
14b	$\angle PZS = 33^{\circ}$ (accept angle values of $\pm 1^{\circ}$)			
15a	(p-q)(5r-2s)			
15b				
1.50	$\frac{r}{r} = \frac{2}{5}$			
16a	Smallest $x=1$, Smallest $y=1$			
16b	Since the indices of the prime factors are multiples of 2, 33q is a			
	perfect square.			
17ai	5.5 m/s ²			
17aii	11 m			
17b	$v = 25.1$ or $25\frac{1}{2}$ or $\frac{176}{2}$			
18a	{ 2, 3, 5, 6, 7, 9, 10, 11, 13 }			
18b	{2, 3, 5, 7, 11, 13}			
18c	{ 6, 9, 10 }			
18d	{ 4, 12 }			
19	There are 180 blue masks.			
20	The larger cup is a better buy since it could have been more costly.			

21a	$\mathbf{P} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$
21b	$\mathbf{RP} = \begin{pmatrix} 41\\17\\31 \end{pmatrix}$
21c	Team Gratitude scores 41 points, Team Respect scores 17 points and Team Compassion scores 31 points. Team Gratitude is the winner.
22a	P(0,-10) & Q(5,0)
22b	$\sqrt{(5)^2 + (10)^2} = 11.2 \text{ units}$
23a	067°
23b	Probability = 0.624 (to 3 sf) or 0.351 (to 3 sf)
24a	2 to 4 students
24b	interquartile range = 6 kg
24c	median = 45.5 kg
24d	The cumulative frequency curve will shift to the right by 5 kg.
25a	33
25b	4n+1
25e	51
25d	Since n is not an integer, 50 is not a term of the sequence.


Answers

	Answers
1a	$10a^2b^5$
bi	$(x-2)^2-10$
ii	(2,-10)
ci	10.5
ii	$n=m^2-2l$
d	x=1.76 or $x=-1.42$
2ai	\$2556
ïi	$66\frac{2}{3}\%$
b	Plan B offers better returns with a higher interest.
3ai	x=17
	5+18+10+17+2=52
ii	12
iii	x=5
bii	$\frac{1}{2}$
<u> </u>	10
iii	The dart will always hit one of the coloured region.
4a	Mike's claim is accurate.
ii iii	240°
	130°
5a ci	Plot S. P
C1	Plot $y = -5x - 8$
	Since the line intersects the curve only at one point, there is only one solution for
ii	$2x^3 - x^2 - 5x = -8.$ -1.9
d	-1.9 -1.1
6ai	3270 m ²
ii	78.4m
ilii	$\angle PSR = 64.0^{\circ}$
v	56.4 m
bi	10.6 m
ii	10.6°
7ai	20°
íi	60°
iii	45°
bi	50.5 cm ²
ii	11.3 cm
8a	$y = 90 - \frac{3}{2}x$
b	$A = 180x - 3x^2$
С	x = 44.14 m or $x = 15.86 m$
L Ł	The state of the s

8d	x-coordinate of turning point = 30			
	y-coordinate of turning point = $180(30)-3(30)^2 = 2700 \text{ m}^2$			
e	Area is maximum,			
	Because the coefficient of x^2 is negative.			
9a	2415 or 2420 litres			
bi	61.6 cm			
ii	39.9 cm			
С	11 cans			
10a	Bearing = $360 - 70 = 290^{\circ}$			
b	8540 km			
Ç	Time difference between Singapore and Paris = $8 - 2 = 6$ hours			
	Singapore 6 hours ahead of Paris			
	Total distance = $4150 + 8540 = 12$, 690 km			
	Total time including stop over = $\frac{12690}{850} + 2 = 16.929$			
	=16 hrs 56 mins			
	Adjustment for time difference = 16 hrs 56 mins - 6 hrs = 10 hrs 56 mins			
	11:15 pm → 12:00 am Saturday (45 minutes)			
	12:00 am → 10:00 am Sunday (10 hours)			
	10:00 am → 10:11 am Sunday (11 minutes)			
	Reach Paris at 10:11 am Sunday			

Question	Marking Scheme	Marks
1	Greatest possible difference	
	=1.734-1.605 OR =1.7349-1.6050	BÍ
2	= 0.129 m = 0.130 m The title of the line graph is biased as it does not allow reader to make	DI
2	judgement.	
	The vertical axis does not start from 0, which exaggerated the	B1
3	differences. (Can accept without the reasoning)	(either one)
~	$(2x^2)^3 \div 4\sqrt{x}$ $= 8x^6 \div 4x^{\frac{1}{2}}$	
	$=8r^6 \div 4r^2$	M 1
	1	
	$=2x^{\frac{5!}{2}}$	A1
4	$9172.05 = 9 \times 10^{3} + 1 \times 10^{2} + 7 \times 10 + 2 \times 10^{0} + 5 \times 10^{-2}$	
	a = 0, b = -2	B1, B1
5	$a = 0, b = -2$ $\frac{3}{1 - x^2} \frac{2}{x + 1}$ $= \frac{3}{(1 - x)(1 + x)} - \frac{2}{x + 1}$	
	$\begin{vmatrix} 1-x^2 & x+1 \\ 2 & 2 \end{vmatrix}$	
	$=\frac{3}{(1-x)(1+x)}-\frac{2}{x+1}$	
	$=\frac{3-2(1-x)}{1-x^2}$	M1
	T TT	WII
	$=\frac{3-2+2x}{1-x^2}$	
	$= \frac{1+2x}{1-x^2} \text{ or } \frac{1+2x}{(1+x)(1-x)}$	A 1
6.	$\angle DQR = \angle CQP$ (vertically opposite angles)	
	DQ = CQ (given that ratio $DQ: DC = 1:2$)	
	$\angle QDR = 180^{\circ} - 90^{\circ}$ (adjacent angles on straight line)	3.69
	= 90°	M 1
	$\angle QDR = \angle QCP = 90^{\circ}$ (property of a square)	
	- Land - Grant	
	ΔDQR is congruent to ΔCQP . (ASA) (shown)	A1
7	$\frac{2h^2 - 11h - 21 = 0}{2h^2 - 11h - 21 = 0}$	P.1
	1	
	(2h+3)(h-7)=0 2h+3=0 or $h-7=0$	M1
	$h = -\frac{3}{2} \text{or} h = 7$	
	ال الله الله الله الله الله الله الله ا	

	4 001	
8	4 cm : 2.8 km	M1
	4:280 000	
	1:70 000	
	$\therefore n = 70 000$	A1
9	$x \le \frac{x+4}{3} \le 2x-1$ $3x \le x+4 \le 3(2x-1)$	
	$3x \le x + 4 \le 3(2x - 1)$	
	$3x \le x + 4 \le 6x - 3$	
	$3x \le x+4$ and $x+4 \le 6x-3$ $2x \le 4$ and $-5x \le -7$ $x \le 2$ and $x \ge 1\frac{2}{5}$	M1
	$x \le 2$ and $x \ge 1\frac{2}{5}$	M 1
	$\therefore 1\frac{2}{5} \le x \le 2$	Å1
10	$a_{\text{original}} = \frac{k}{x^2}$, where k is a constant	
	$a_{\text{now}} = \frac{k}{\left(0.5x\right)^2}$	M 1
	$a_{\text{now}} = \frac{k}{0.25x^2}$	
	$\frac{a_{\text{now}}}{a_{\text{original}}} \frac{k}{0.25x^2} \cdot \frac{k}{x^2}$	M 1
	$\frac{a_{\text{now}}}{a_{\text{original}}} \frac{1}{0.25}$	
	$\frac{a_{\text{now}}}{a_{\text{original}}} \frac{4}{1}$	
	Tonginal -	,
	$\therefore a_{\text{now}} : a_{\text{original}} = 4:1$	A1.
11	Base of figure = 10 units	MI
	Vertical height = 6 units Area = 10×6	M1
	= 60 square units	Á1

1.41-	∠ <i>PZS</i> = 33°	
14b	(accept angle values of ±1°)	B1
15a	5pr-2ps-5qr+2qs	
154		M 1
	=p(5r-2s)-q(5r-2s)	
	=(p-q)(5r-2s)	A1
15b	5pr - 2ps - 5qr + 2qs = 0	
	(p-q)(5r-2s)=0	
	p-q=0 or 5r-2s=0	M1
	$p=q$ or $\frac{r}{s}=\frac{2}{5}$	A1
	(reject)	
16a	Smallest $x = 1$	B1
	Smallest $y = 1$	Bl
16b	33 <i>q</i>	
	$=3\times11\times3\times7^2\times11$	
	$=3^2 \times 7^2 \times 11^2$	M1
	=3°×/°×11°	
	Since the indices of the prime factors are multiples of 2, 33q is a	
	<u> </u>	A1
17ai	perfect square. 5.5 m/s ²	B1
17ai 17aii	11 m	B1
17b		M1
170	$\frac{1}{2} \times 7 \times v = \frac{1}{2} \times 2 \times 11 + 7 \times 11$	
	$\frac{2}{3.5} v = 88^{\circ}$	
	$v = 25.1$ or $25\frac{1}{7}$ or $\frac{176}{7}$	A1
18a	{2, 3, 5, 6, 7, 9, 10, 11, 13}	B1
18b	{2, 3, 5, 7, 11, 13}	B1
18c	{ 6, 9, 10 }	B1
18d	{4, 12}	<u>B1</u>
19	$3:4:5 \rightarrow 9:10:11$	201
	7.5:10:12.5	MI M1
	1.5 units → 30 masks	M1
	1 unit → 20 masks	1755
	9 units → 180 masks	A1
	There are 180 blue masks.	
20	$(6.5)^3 = x$	M1
	$\left \left(\frac{6.5}{5} \right)^2 = \frac{x}{\$1} \right $	
1	x=\$2.197	M1
Laborate de la constitución de l	λ=φ2,171	
	The larger cup is a better buy since it could have been more costly.	M1,A1
	1	TATY ' TA'T

21a	$\mathbf{P} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$	B1
21b	$\mathbf{RP} = \begin{pmatrix} 12 & 5 & 3 \\ 3 & 8 & 7 \\ 9 & 4 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$ $= \begin{pmatrix} 41 \\ 17 \end{pmatrix}$	M1
	(31)	A1
21c	Team Gratitude scores 41 points, Team Respect scores 17 points and Team Compassion scores 31 points. Team Gratitude is the winner.	B1
22a	P(0,-10)	B1
	· · · · ·	••
	Q(5,0)	B1
22b	$\sqrt{(5)^2 + (10)^2}$	Mi
<u> </u>	=11.2 units	A1
23a	067°	B1
23b		
	North 6 m 4.5 m Goat	
	Area of circle = $(4.5)^2 \pi$ $\cos \alpha = \frac{4.5^2 + 4.5^2 - 6^2}{2(4.5)(4.5)}$ $\alpha = 83.6^\circ$ $\theta = \frac{180^\circ - 83.6^\circ}{2}$ (base angles, isos Δ)	M1
	$\theta = 48.2^{\circ}$	MÎ

		T
	Area of sector = $\frac{48.2 \times 2}{360} \times \pi (6)^{2}$	
	$=30.2784 \text{ m}^2$	
	Area of segment B = $\frac{83.6}{360} \times \pi (4.5)^2 - \frac{1}{2} \times (4.5)^2 \sin 83.6^\circ$	
	$= 4.7114 \text{ m}^2$	
	Probability = $\frac{30.2784 + 2(4.7114)}{(4.5)^2 \pi}$ or $\frac{30.2784 + 2(4.7114)}{(6)^2 \pi}$	A1
	= 0.624 (to 3 sf) = 0.351 (to 3 sf)	
24a	2 or 4 students	B1
		MI
24b	interquartile range = 48.5 - 42.5	!
	= 6 kg	A1
24c	median = 45.5 kg	BI
24d	The cumulative frequency curve will shift to the right by 5 kg.	B2
25a	33	B1
25b	4n+1	B2
25c	51	B1
25d	4n+1=50	M1
250	4n = 49	
1	$n=49\div 4$	1
	Since n is not an integer, 50 is not a term of the sequence.	A1